A molecular understanding of mitoxantrone-DNA adduct formation: effect of cytosine methylation and flanking sequences.

نویسندگان

  • Belinda S Parker
  • Trevor Buley
  • Ben J Evison
  • Suzanne M Cutts
  • Greg M Neumann
  • Magdy N Iskander
  • Don R Phillips
چکیده

When mitoxantrone is activated by formaldehyde it can form adducts with DNA. These occur preferentially at CpG and CpA sequences and are enhanced 2-3-fold at methylated CpG sequences compared with non-methylated sites. We sought to understand the molecular factors involved in enhanced adduct formation at these methylated sites. This required, first, clarification of factors that contributed to the formation of adducts at CpG sites. For this purpose mass spectrometry of an oligonucleotide duplex (containing a single CpG adduct site) was used to confirm the presence of an additional carbon atom (derived from formaldehyde) on the drug-DNA complex. The effect of 3'-flanking sequences was revealed by electrophoretic analysis of oligonucleotide-drug adducts, and the preferred adduct-forming site was identified as 5'-CGG-3'. Radiolabeled studies of drug-DNA adducts confirmed that the site of attachment involved the exocyclic amino of guanine. Molecular modeling analysis of the relative stability of the intercalated form of mitoxantrone was consistent with observed adduct-forming potential of CG sites with varying flanking sequences. The known preference for adduct formation at methylated CG sites was confirmed by energetics calculations and shown to be due to a shift of equilibrium of the intercalated form of the drug from the major groove (at CG sites) to the minor groove (at methylated CG sites). This increases the relative amount of drug that is located adjacent to the N-2 exocyclic amino of guanine in the minor groove, where covalent linkage is facilitated. These results account for the enhanced covalent binding of mitoxantrone to methylated CG sequences and provide a molecular model of the interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C5 cytosine methylation at CpG sites enhances sequence selectivity of mitomycin C-DNA bonding.

We have established that UvrABC nuclease is equally efficient in cutting mitomycin C (MC)-DNA monoadducts formed at different sequences and that the degree of UvrABC cutting represents the extent of drug-DNA bonding. Using this method we determined the effect of C5 cytosine methylation on the DNA monoalkylation by MC and the related analogues N-methyl-7-methoxyaziridinomitosene (MS-NMA) and 10-...

متن کامل

Pattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress

DNA methylation as an epigenetic mediator plays the important role in spatial and temporal gene regulation and ensures the stability and the plasticity of organism. In this investigation, methylation sensitive amplification polymorphism (MSAP) were assessed in CCGG sites on a halophytic plant, Aeluropuslittoralis in response to different temperature stresses including freezing...

متن کامل

Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis

DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...

متن کامل

Mycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region

Mycobacterium aviumsubspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne’s disease) in ruminants. Plus, MAP has consistently been isolated from Crohn’s disease (CD) lesions in humans; a notion implying possible direct causative ...

متن کامل

Hypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients

Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 18  شماره 

صفحات  -

تاریخ انتشار 2004